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STATISTICAL ANALYSIS OF DETECTION PERFORMANCE 
FOR LARGE DISTRIBUTED SENSOR SYSTEMS 

1.   INTRODUCTION 

This report develops analytical expressions for the detection performance of a sensor system 
composed of a large field of distributed, short-range detectors. If a field can be deployed slowly 
and sensors anchored to a specific location, the performance can be analyzed using traditional 
search theory for a large number of sensors. Furthermore, if the number of sensors is large 
enough so that the field coverage is very dense, visual examination of the resulting distribution of 
"contacts" will remove false alarms and detection performance of the field can be analyzed by 
examining the detection performance of an individual sensor. Neither one of these analysis 
techniques is appropriate if the field is sparsely populated in a random manner, and that is the type 
of sensor field analyzed in this report. 

The analysis in this report examines the issues of detection performance of large distributed 
systems of proximity sensors. The effects of sensor field distribution (both uniform and 
non-uniform), sensor performance characteristics, and basic tracking strategy on the performance 
of the overall field are examined. The performance is analyzed in terms of overall probability of 
detection and probability of false alarm during some operation time. The report begins with a 
discussion of sensor performance, incorporating range dependency in ideal and non-ideal 
scenarios. The next section discusses field detection performance for both stationary and moving 
targets. The third section of the report discusses some field design strategies based on the 
analysis. The report concludes with a summary of the primary analysis results. 

2.   DISTRIBUTED AREA COVERAGE MODEL 

The modeling of the detection performance of a distributed sensor system requires three 
uncertain quantities that are modeled with random variables: individual sensor performance, 
sensor distribution in the field, and target location/movement. These parameters are treated as 
random with some known characteristics. For the purposes of this analysis, the target is fixed at 
constant speed and heading. The random location and orientation of the target is factored out of 
the problem by aligning the coordinate system of the problem so that the target track lies along 
the X-axis. This is performed without any loss of generality, since the sensor distributions of 
interest are area coverage systems. (Extensions to barrier problems will be examined in a sequel.) 



2.1   INDIVIDUAL SENSOR MODEL 

For the high signal-to-noise ratio (SNR) appHcation of interest, each sensor is essentially an 
energy detector with some simple classification logic. This implies that the detection performance 
of an individual sensor is dependent only on the target's range to the sensor, so that the probability 
of a detection event for sensor j is written as Pdj = Pd{rj), where Pdir) is the detection 
probability of a characteristic sensor as a function of range r, and rj is the target's range to the j*'' 

sensor. 

To examine some forms of sensor detection probability functions, several specific scenarios 
are considered. For a target moving at a constant speed VT along a constant heading, the path 
followed by the target over a period of time Top is given by a line segment of length L = vrTop. 
For a detection to occur, one scheme may require that the sensor lie close enough to this line 
segment so that the target's closest point of approach (CPA) to the sensor TQ is within the 
detection radius. In this scheme, a detection occurs with probability Pdj = Pd{ro)- If one further 
restricts the problem so that the target must stay above the detection threshold for some specified 
integration time TM, then the CPA range for detection opportunities is limited to (see figure 1 for 
a geometrical sketch) 

ro < sJRl - {vTTintl2)\ (1) 

where Rd is the range at which the detection threshold is exceeded. Thus, the restriction that 
detection opportunities occur only when the target is within range (above threshold) for the entire 
integration time yields 

_ r Pd{r,),      Ti < ^Rj - {vTT,^t/2r 

[      0, otherwise 

as the probability of a single sensor detection for a target that has CPA range rj to the sensor j. 
This expression is readily evaluated given a range-based detection probability, which may be 
obtained from modeling or experiments. In either case, the resulting detection logic will greatly 
impact the individual sensor performance. For simplicity, one may wish to consider a sensor 
whose detection performance versus range is given by 

f Pd,      rj < Rd 

[   0,       rj > Rd 

Of course, such an idealized sensor performance cannot be exactly obtained. To assess the 
performance impact of deviations from the ideal, the following model is developed: 

Pd, rj <Rd- a/2 

Pd{rj;a) = {   {l + {R^-rj)/a)Pd,      Rd - a/2 < rj < Rd +a/2   , (4) 

0, rj >Rd + a/2 



Sensor Detection Zone 

i?./ 

Sensor 

N/?d 

''0 

VrTi T-linI ' 

-^ Target Track 

Figure 1. Sensor Detection Geometry Showing Kinematic Constraints 

where a > 0 is a parameter to measure the deviation from perfect, and the limit of a —> 0 
degenerates to the case of the ideal sensor in equation (3). 

2.2   FIELD DETECTION MODEL 

Assume that the sensors are independently and identically distributed over a nominal area 
according to some known spatial distribution p{x, y). Under that assumption, the probability of a 
single sensor having a CPA range-to-target of less than TQ is given by 

Pr(rj < ro) = // p{x, y) dx dy, (5) 

where D is the region of space given by D = {{x, y) : {x - XTY + {y - VTY < I'D for a target 
located at (x, y) = (XT, yr)- For the case of a stationary target, the point (x^, yr) remains 
constant throughout the time interval of operation Top. In this case, the integral in equation (5) is 
taken as the area integral of p(x, y) over a disk of radius TQ centered about the target location. 
Specifically, the integral is given by 

Pr(rj < ro)   =   jj  p{x,y)dxdy 

pro    r2n 
— p{rcos{9)+XT,rs'm{9)+yT)rd9dr, (6) 

Jo   Jo 

where the transformation to polar coordinates (r, 6) was made to simplify the integral. 

For the case of a moving target of constant heading and constant velocity, the coordinate 
system is re-oriented (without any loss of generality) so that the target track lies along a line of 
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Figure 2. Area D for Integration Around the Target Track 

constant J/T- Then the integral in equation (5) becomes 

Pr(rj < ro)    =   jj  p{x, y) dx dy 

rVT+ro    I-XTW+VTTOP rVT+ro   r^ 

JvT-ro   Jxi (0) 
p{x,y) dxdy 

/        p{x' +xriO), y' + yT)dx'dy' 
-ro Jo 

=    r n °' {p{x' + XT{0), yT + r)+ p{x' + xr(0), 1/r - r)} dx' dr, 
Jo   Jo 

(7) 

where the approximation is valid for vrTop > ro. The location of the area D in target track space 
is shown in figure 2. From the figure, it is clear that the approximation for large vrTop is to 
approximate the region around the track by a rectangle, as done in equation (7). In the case where 
the distance traveled by the target (vrTop) is smaller than the detection radius ro, a better 
approximation is to use the stationary target formula, which reduces the region shown in figure 2 
to a circle. A more exact formula that holds for both of these cases is readily obtained by 
integrating the exact area of the region in figure 2; however, its evaluation is analytically 
intractable and therefore not included in this analysis. 



Both of the formulas (see equations (6) and (7)) obtained for probability of a target coming 
within a certain range ro of a sensor take the form 

fro 
Pr(r, <ro)=/    f{r)dr, (8) 

so that the resulting integrand /(r) in (8) is a probability density function (PDF) for the 
range-to-target. As a simple summary of these results, recall that these PDFs are given by the 
following: 

Stationary Target Range PDF 

/(r) = [ %{r cos{9) + XT, r sin{9) + yr) r dO, (9) 
Jo 

Moving Target Range PDF 

rvxTop 
f{r)= {p{x' + XTiO),yT + r)+p{x' + XT{0),yT-r)} dx', (10) 

Jo 

where the target position is given by {x, y) = {XT, yr), which is either time-varying (second case) 
or fixed (first case). 

The probability of obtaining a certain range-to-target is combined with the probability of the 
single sensor detection at a given range to obtain the probability of an individual sensor detecting 
the target. The notation Pd,s is used to differentiate the detection performance of an individual 
sensor in the field (i.e., under a distribution and with a target present) from the sensor 
characteristics that are described by Paj as a function of range. Since the detection performance 
of a given sensor is a function of range, and the range is a random variable with a known PDF, the 
net probability of detection for a sensor in the field is given by 

Pd,s = j^   Pd,j-f{r)dr, (11) 

where Top is the time of the operational interval over which a detection is sought, and the infinite 
limit will be reduced by the sensor performance (i.e., the sensor has zero detection capability 
beyond a certain range). 

To determine the net detection performance of a field of sensors, the fact that the sensors are 
independently and identically distributed is used. Under that condition, the process of M sensors 
out of A'^ total sensors detecting the target is viewed as a Poisson point process over the detection 
performance of an individual sensor. Thus, the probability of field level detection by M out of A'^ 
sensors is given by 

Pr(M detect) = ( ^ ) 6"^        </> = NPd,s. (12) 



To have at least one detection over the interval of time given by Top, it is necessary to obtain a 
field level detection performance of 

Pr(> 1 detect) = 1 - Pr(0 detect) = 1 - e~'*. (13) 

In a similar fashion, it is easy to show that the probability of obtaining at least M detections over 
the operation interval is given by 

M-\   /Jjn\ 

Pr(> M detect) = 1 - E pT    e~*- ^^"^^ 
m=0   \"^-/ 

2.2.1   Special Case 1: Uniform Distribution of Idealized Sensors 

As a first special case, consider the detection performance of a uniformly distributed field of 
ideal sensors. In this case, the characteristics of an ideal sensor are that it has constant Pd for 
ranges less than some range Rd and that the Pd is zero for all ranges greater than Rd. The 
mathematical description of such a sensor was given in equation (3). Also, the sensor is 
constrained to maintain a target within range for an integration interval of Tint as given in 
equation (2). Thus, the sensor performance is given by 

^ (15) Pdj = < 
[   0,        r>^Rl- {vrTntny 

The spatial distribution for sensor location for a uniform field over an area ^o can be written as 

p{x,y) = —,        V x,y. (16) 

This greatly simplifies the range PDFs for both the stationary target and moving target. In this 
case, the stationary target PDF (equation (9)) becomes 

and the moving target PDF (equation (10)) becomes 

rvrTop / 1 1 \ '2'VTTOP .,g. 

Combining these expressions into equation (11) for the probability of an individual sensor in the 
field, and recalling the identity (}> = NPd,s from equation (12), the net sensor field performance as 



characterized by (j) is given by 

for the stationary target case, and 

9   =    —r— /     Pd-rdr 
AQ   JO 

PdNnRJ 

Ao 
(19) 

L Pndr 
Ao      Jo 

(20) 

for the moving target case. Note that the cutoff of Rd to include integration time was not 
performed for the stationary case since it is a kinematic-based requirement, and the use oivr = Q 
in the kinematic bound yields a range of Rd- 

2.2.2   Special Case 2: Uniform Distribution of Non-Idealized Sensors 

As a second special case, consider the effects of a non-idealized sensor detection 
characteristic, as shown in figure 3. In this case, as described in equation (4), the performance of 
the sensor is degraded by tapering the sensor's effectiveness for longer ranges. The particular 
form of the taper is chosen so that the total area under the detection versus range curve remains 
constant. This constraint is a form of a power conservation law: the "total" capability of the 

o 
-»—• 
(U 
Q 
p 

o 
CO c 
0 

Range 

Figure 3. Sensor Detection Performance for Idealized Sensor (Dashed 
Line) and Non-Idealized Sensor (Solid Line) 



sensor, in an integrated sense, is unchanged. Also, recall from equation (4) that the parameter a 
controls the deviation from the idealized case, and a = 0 reduces to the idealized case. 

To examine the effect of such a change in sensor performance, the analysis in the previous 
section is repeated for the new sensor performance curve. Since the sensor spatial distribution is 
uniform, the stationary and moving target PDFs are the same as in equations (17) and (18), 
respectively. However, the P^j term in the sensor-in-field detection performance expression (11) 
has changed to that given by equation (4). Applying this change to the sensor field performance 
characteristic </>, one obtains 

2TIN 

^47 L Pd-rdr + Pd[- 
jRa-a/2 \2 

{Rd r dr 
a 

2nN Pd{Rd - a/2y 
+ Pd 

'RdOi a 

12 

PdNn I j^2_^^ 
12 

(21) 

for the stationary case, and 

2VTTOPN 
4>   = 

^0 

2VTTOPN 

L 
Rd-Oc/2 rRa+a/2 (l (R r)   .    ^ 

Pddr + j^^ Pd\-+^-^ -\ dr 
lRi-a/2 a 

A, 

2PdN{vTTop)Rd 

Ao 

p.(«.^|).p.(| 

(22) 

for the moving target case. The kinematic requirement that the target remain in some detection 
radius for a given amount of time Tint is added to the latter expression by translating 

Rd -^ \/Rd - {vTTint/2y, which creates 

cl> = 
PdN{vTTop) \f^^z¥^^ 

A^ 
(23) 

for the moving target case. 

The moving target case has a field-level performance characteristic (f) (see equation (23)) that 
is completely independent of the taper a. This occurs whenever the total area under the Pd versus 
r curve of the sensor characteristic remains constant. Also note that the stationary target field 
performance characteristic as given in equation (21) is always greater than that for the ideal 



Effective ({) (scaled as Nx P for uniform distribution) 

Figure 4. Field Detection Performance as a Function of(f) 

sensor (o; = 0). Since greater values of (p translate to better detection performance, a taper on the 
sensor detection characteristic (as long as the area is the same) will improve performance of the 
system, and the greater the taper, the better the system performance. Furthermore, this 
improvement occurs only for stationary (or very slowly moving) targets, and the performance for 
moving targets is unchanged. 

For reference, figure 4 shows a plot of field-level performance characteristic values versus 
field-level probability of detection for a few detection limits (i.e., at least one detects, at least two 
detect, etc.). For simplicity, the horizontal axis has been normalized to be equivalent to 
(j)Q = N ■ Pd for a uniform distribution over a 100 nmi x 100 nmi area with 100 m detection 
radius sensors. This provides an easy reference for changes in 0. For instance, if the nominal case 
has 5,000,000 sensors with a sensor P^ of 0.8, then a four-detection requirement yields a field 
detection 40% of the time, as shown in the figure by an X. If (p increases by 25% over the 
nominal case, then the performance increases to 55% as shown by the Y on the figure. 



2.2.3   Special Case 3: Non-Uniform Distribution of Idealized Sensors 

A third special case for examination is the effect of non-uniform distributions of sensors. To 
simplify the analysis, the discussion is limited to bivariate Gaussian distributions of idealized 
sensors. This case gives some guidance on the effects of sensor clustering (due to tides, currents, 
etc.) that will occur over time, as well as the effect of rapid deployment, which may create a 
clustered distribution at the initial time. As in the previous case, the impact of the change in 
distribution on the field-level performance characteristic (j) is examined. 

To begin the non-uniform distribution, the bivariate Gaussian distribution is formed with 
independent variables x and y as 

p{x,y) = 
1 

27rcr2P, 
exp 

0 

y' 
2^2 

(24) 

where the mean of the distribution is taken as {x, y) = (0, 0) and both variables are distributed 
with the same standard deviation a. The choice to center the distribution at the origin is for 
convenience. The parameter PQ is a scaling term that represents the finite extent of the field, and it 
is given by 

L 
Pn = erf 

2^/2a 
(25) 

for a rectangular area of dimension L x. L, where erf(-.) is the error function. An example of the 
relative density according to this distribution is shown in figure 5. Note that in the limit as 
cr ^ oo, p{x, y) -> 1/AQ, which is the uniform case. (The asymptotic form of the error function 
for small argument is erf(e) ?» 2e/v^.) 

Applying the bivariate Gaussian distribution to the stationary target range PDF of equation 
(9), one obtains the following: 

'-{r cos{B) ^ xrf - {r siu{B) + yrf 

^^'^   =    2^^^^ Jo   ' 
exp 

\2Tra^Pc 

r 

exp 
—r (XT + VT) 

2^2 

2^2 

r2-!r 

de 

exp 
—rxTCOs{6) — ryTsm{9) 

a^ 
dd 

a^R 
exp 

—r 

2^ 
exp 

-(4 + y^) 
2a2 

(26) 

where the approximation in the third line is made by assuming the integrand in the second line to 
be nearly equal to one, which holds for sensor detection ranges r that are small compared to the 
field distribution standard deviation a. Applying this value of the stationary target range PDF to 
the sensor field performance characteristic (p, one obtains 

cp   =    /     Pd-f{r 
Jo 

(r) dr 

10 
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Figure 5. Sample Spatial Distribution for Bivariate Gaussian with a = 50 nmi 

exp 
[Xn + 2/r) 

^)exp 

2(T2 

-{XT + VT) 

rlid 

L r exp 

20-2 
1 — exp (27) 

where PQ is given as in equation (25). 

By comparing the value of the sensor field performance characteristic ^ in equation (27) with 
that for the uniform field shown in (19), one can assess the impact of the non-uniformity of the 
field on the detection of a stationary target, which is parameterized by the distribution standard 
deviation a. The results of this comparison are shown in figure 6 for a variety of values of a. 
Obviously, the performance approaches the uniform as a gets larger (in the limit as cr -> oo, one 
gets the same value for equation (27) as for equation (19)). Also, the performance is better than 
uniform for targets near the center of the distribution (high density) and worse than uniform for 
those near the edges (low density). Of interest is the transition from better than uniform to worse 
than uniform, which seems to occur between 35 and 40 nmi from the distribution center, 
regardless of the distribution standard deviation a. 

11 
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Figure 6. Relative Change in Field Performance for a Non-Uniform 
Sensor Distribution Against a Stationary Target 

By performing a similar analysis of applying the bivariate Gaussian distribution to the moving 
target range PDF of equation (10), one obtains the following: 

fir)   = 27ra2R. 

1 P'TT^P 

rVTTnp 

+    I exp 
/ Jo 

-(x' + XTm^-iyr + r)' 

2     /.,_   _ ^^2 

dx' 

-ix' + xri0)y - il/T - r 
2a2 

dx' 

27ra2Po 

Jo 

exp 
-{yr + ry 

n'TTnp 
X    / exp 

1 

2\/27r(TPo 
exp 

2^2 

2(T2 

-{ijT + r)^ 

+ exp 
-{yr-ry 

dx' 

erf 

2rT2 

+ VTTOP 

+ exp 

2rT2 

-iVT-rf 
2(T2 

(xr{0) + VTToA     ^^(M0)\ 
[        V2a        ) \V2a) 
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1 

27rcrPo 
exp 

-{VT + rY 

2a2 
exp -ivi 

2a2 )-&)■ 
(28) 

where the simplification in the last line is made by assuming the target path centers about a; = 0 
(but makes no assumption about the constant yr component of the target path). Applying this 
value of the moving target range PDF to the sensor field performance characteristic (f), one obtains 

(using R = ^Rl - [vrT^nt/m 

fR 

=    /   Pa-fir) 
Jo 

dr 

PH 

2TTaPo 
erf 

V2^2(7/ io 
exp 

-jyT + rf 
2(T2 

+ exp -{yi 
2^2 

dr 

2Po)^^  \2V2a 
erfl^^Uerf^^^-^ 

V2a y/2a 
(29) 

where PQ is given as in equation (25). 

By comparing the value of the sensor field performance characteristic (f) in equation (29) with 
that for the uniform field shown in (20), one can assess the impact of the non-uniformity of the 
field on the detection of a moving target, which is parameterized by the distribution standard 
deviation a. The results of this comparison are shown in figure 7 for a variety of values of a, and 
a target speed of 5 knots over an observation time of 12 hours. In figure 8, the result is shown for 
increasing the target speed to 15 knots. One observation is that the slow (5-knot) target has 
performance nearly identical to stationary, while the fast (15-knot) target is very different. Note 
that for the fast-moving target, almost all distributions show performance worse than uniform, 
which occurs because the target is moving fast enough to spend some of its time in the region of 
low sensor density. The strong dependence of the distribution on target speed is driven by the 
term vrTop in equation (29). Thus, a large increase in observation time T^p will have a similar 
effect on the performance as the increase in target speed. Also, the effect on increased speed may 
be mitigated by reducing the observation time appropriately. 

2.3   FIELD FALSE ALARM MODEL 

For the field false alarm analysis, first consider the characteristics of an individual sensor. 
Assume that the sensors are independent and that their statistical properties of false alarm are 
identically distributed. The sensor false alarm rate Pfa is the probability of an individual sensor 
classifying a detection over an integration time interval Tint when no target is present; that is, 

Pfa = Pr{detection during Tint \ no target is present}. (30) 

13 
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The probability of an individual sensor registering a false alarm during the time interval of 
operation Top is given by 

Pfafip   =   1 - Pr{no false alarm during Top} 

=   l-(l-P/,r'"'/^-, (31) 

where the term (1 - Pfa) represents the probability of a false alarm not occurring during the time 
interval TM- 

The notion of a field-level false alarm is not merely to have a false alarm in the field; rather, it 
is to have a sequence of false alarms that mimic the behavior of a target. That is, if the detection 
requirement is that M out of A'' sensors must detect within a region of interest dictated by 
expected target characteristics, then the field-level false alarm requirement is that M out of A'^ 
sensors must provide false alarms within a region that is consistent with expected target 
characteristics. At this level of analysis, one does not consider the situation where the M sensor 
detections are a mixture of "real" detections and false alarms. To account for the field-level false 
alarm requirement, one forms the probability of M false alarms occurring within a given region 
over the time of operation Top. 

Given a sensor spatial distribution of p(x, y), the probability of a single sensor lying within 
the area D is 

Pr(sensor in D) = PS,D = // p{x, y) dx dy, (32) 

where the entire region is an area of size AQ, so that 

//   p{x,y)dxdy = 1. (33) 

For uniform distributions, the probability reduces to PS,D = AD/AQ, where AD is the area of D, 
which follows from p{x, y) = I/AQ for the uniform distribution. The probability of having 
exactly M false alarms within a given region D is defined by sampling a Poisson point process 
within region D, with the result of (similar to equation (12)) 

( QM\ 

Pr(M false alarms in D) = I — J e-^        B = NoPfafip, (34) 

where A''^ is the number of sensors in region D. The value of No is given by 

ND = Ps,D ( -7^] = N ■ AD/A, (35) 
SAo 

for uniformly distributed fields. 
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The problem of interest for field-level false alarm analysis is stated as: What is the probability 
of at least M false alarms occurring within any area of size D? To answer this, consider the 
complementary question: What is the probability that there are no areas of size D that contain at 
least M false alarms? The latter question is more readily assessed analytically. Thus, that 
probability is calculated, and the complementarity property is used to get the other probability. 

The probability that there are no areas of size D that contain at least M false alarms is the 
same as asking for the probability that every area of size D contains less than M false alarms. 
Beginning with a single region of size D, from equation (34) one concludes that 

Pr(< M false alarms in D) = Y. [ — ] ^"^        ^ = ^DPfa,op- (36) 

To extend this reasoning to every region of size D containing less than M false alarms, a density 
argument is employed; the relative density of regions of size D over the area AQ is given by 
AD/AQ, so the number of them is AO/AD, and since each region has an identical probability of 
less than M false alarms (given by equation (36)), one concludes that 

Pr(< M false alarms in all regions D) 
-NP •fa,op (37) 

for uniform distributions, where a = AD/AQ. 

Now the complementarity property is used to obtain the final false alarm expression: 

Pr(> M false alarms) = 1 
r^i (^A^P;.,„PMO)-T'"^^" 

m=0 "^■ 

e-^'^f'-p, (38) 

which is the probability that there is at least one region of size D that contains at least M false 
alarms. The size of area D is dependent on the detection strategy employed. For the target 
detection situations analyzed in section 2.2, detection area D can be mapped out as the area in 
which a sensor has a detection opportunity, or more specifically 

A. = 0. 
where (p depends on whether the target is stationary or moving. If searching for stationary (or 
slowly moving) targets, this yields 

Ao = nRl (40) 

and for faster moving targets, 

AD = {vTTop)\I^Rl-{vTT,ntY. (41) 
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2.3.1   Special Case 1: Non-Uniform Distribution of Sensors 

To consider the effects of the spatial distribution of sensors in the field, a special case is 
formed where the field is broken into two sections, one of high density and one of low density. 
For notational simplicity, assume that the region is a rectangle in the x-y plane extending from 
-xo < X < xo and -yo < y < Vo, for a total area of AQ = 'ixoyo. For the case of a uniform 
distribution, the results of the previous section can be applied with the use of ^o = 4xoyo and 
p{x,y) = 1/Aoforall {x,y). 

It is now assumed that the total region is to be sectioned into two regions (A i and A2) of equal 
size, where 

f        Pi, -3:0 < x < 0        (regional) 
p{x,y) = { ■ (42) 

[ 2/Ao - Pi,      0 <x <xo        (region A2) 

Since the area of each of the regions is equal to 2xoyo = Ao/2, one has the same total number of 
elements in the same total area as the uniform density case. For this special case, the probability 
of false alarm is formed as the probability of a false alarm occurring in either of the two regions; 
to simplify the model, the cases of a false alarm occurring with some sensors from each of the 
two regions are ignored. 

The false alarm probability in region Ai is given by equation (38) with the total region area 
replaced with the area of Ai (which is Ao/2) and the total number of sensors N replaced with the 
expected number of sensors in region Ai, which is given by 

Nr = [f  p{x,y)dxdy (-J^] = iVpi^/2. (43) 
JJAi \ys,AoJ 

Similarly, the number of sensors found in region A2 (which has the same area as Ai) is given by 

N2 = 11  p{x, y) dx dy f-5^ ) =N- Np,Ao/2, (44) 
JJA2 \^S,AoJ 

where Ni + N2 = N, as expected. The probability of a false alarm occurring in either region Ai 
or region A2 is now given by one minus the probability that neither contains a false alarm; that is, 

Pr(> M false alarms) = (45) 

Vio to ^!«! J 

The false alarm performance of a sample area distribution relative to variations of the relative 
size of A^i and N2 is shown in figure 9. In this figure, the horizontal axis represents the relative 
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density of elements in region 1, where a relative density of 1 corresponds to the density for a 
uniform distribution (A'^i = N2 = Nj2) and a relative density of 2 corresponds to all of the 
elements being in region 1 (TV) = N,N2 = 0). The dashed lines in the figure correspond to the 
values of false alarm for a uniform distribution. For all three cases considered, it is apparent that 
small changes from uniform have negligible effect on field-level false alarm performance. Table 1 
summarizes the increase in false alarm rate for a few key conditions. 
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Figure 9. Field False Alarm Rates for Uniform and Non-Uniform Sensor Distributions 

Table 1. Change in Field Level False Alarm Rate for Deviations from Uniformity 

Case />i = 1.10 X po P\ = 1.20 X />o P\ = 2.00 X pn 

A^>3 Pfa = 1.02 X Pf,^„om Pfa = 1.10 X Pfa,nom Pfa = 2.58 X Pfa,nom 

A^>4 Pfa = 1.06 X Pfa,nom Pfa = 1.24 X Pfa,nom Pfa = 7.64 X Pfa^nom 

A^>5 P;„ = 1.10 X Pfa,ncm Pfa = 1.40 X Pfa,nom Pfa =  15.43 X  Pfa,nom 
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From table 1 it is clear that placing all of the elements in one half of the area produces large 
deviations in the false alarm rate, and the amount of that change grows with the number of 
required detections (i.e., the effect for iV > 5 is much larger than for A^^ > 3). It is also clear that 
modest changes from uniformity (on the order of 10% deviation in density) have minimal effects 
on the overall false alarm performance. From this analysis, it is concluded that changes in field 
density of 10% or less can be treated as uniform distributions for false alarm analysis. 

2.3.2   Special Case 2: Clustering of Sensors 

The analysis of fields of clustered sensors (groups of higher density in small areas) can be 
treated as an extension of the previous analysis of the field broken into two regions. Consider a 
field made of C statistically identical and independent clusters, each of which contain N/C 
elements. Following the method of the previous section, there are C + 1 total regions: C clusters 
and one region of the remaining empty space. If the area of each cluster is given by Ac and there 
are A'^ sensors in the total field, then the probability of false alarm for an individual cluster is 
given by 

Pr(> M false alarms) = 1 - ^^^{Ao{N/C)Pf.,o,/Acr'"''^"'' 
Lm=0 ^■ 

-(A^/C)P/a,op_ (46) 

Equation (46) is the probability of false alarm for an individual cluster. 

Since the multiple clusters are assumed to be independent and identically distributed (in a 
statistical sense), the total field false alarm is derived from (46) by use of the complementarity 
property. Recall that the probability of no false alarm in a given cluster is given by one minus the 
probability of a false alarm. The field level false alarm probability is the probability that any 
cluster has a false alarm, which is given by one minus the probability that all clusters did not 
report a false alarm. This is given by 

Pr(> M false alarms) = 1 ''y^iAoNPfa,o,/{CAc)r'''^''^^'' ,-ArP/a,op_        (47') 

The expression for clustered-field false alarm probability (equation (47)) is the same as that for a 
uniform field (equation (38)) with the total area Ao replaced by the area of total cluster coverage 
CAc- Note that this expression assumes the independence of clusters; that is, no consideration is 
given to situations where a false alarm occurs because of sensors from two neighboring clusters 
combining to create a potential track. 
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3.   FIELD DESIGN CONSIDERATIONS 

From a field design viewpoint, the objectives are low probability of false alarm and high 
probability of detection for a fixed total number of sensors TV covering a given area AQ. 

Reasonable assumptions on deploying large numbers of sensors show that a uniform distribution 
is improbable. However, both the detection and false alarm analyses show that only moderate 
deviations from uniformity are acceptable before performance degrades. For the examples 
considered, one desires spatial standard deviations on the order of tens of nautical miles (see 
figure 8) for detection performance and density deviations of no more than 20% (see figure 9) to 
minimize impact on false alarm. This leads to the conclusion that a practical design solution is to 
deploy a field of clusters of sensors. Each cluster can be held to a reasonably uniform distribution 
by making the clusters small enough and spacing them within the field to maximize detection 
performance over the entire area. 

Some ideas for cluster distributions include widely-separated high-density rows of sensors, 
checkerboard distributions of high-density "squares" of sensors, and random distributions of 
clusters of varying sizes. For the analysis in this report, consider the nominal problem of 
searching a 40,000-nmi^ area for a contact of speed up to 5 knots. The probability of detection for 
the clustered field is the net probability of detection for each of the clusters; that is, 

PdJ^eld{Tc) = 1 - (1 - Pd,clusterf. (48) 

where C is the number of clusters. The probability of detection within a cluster (Pd,duster) is 
given by equation (14), where A'' is replaced by N/C and 0 is computed over the area of a cluster. 
This expression can be modified by the changes shown in sections 2.2.1-2.2.3 for modifications to 
the ideal sensors in a uniform distribution within a cluster. This probability is only for the interval 
of time it takes the target to transit a nominal cluster (Tc = 2^jAc/n/vT). Since there are many 
such opportunities within the entire field, the total probability of detection is given by 

Pd,nem{Tap)     =     l-{l-Pd,neld{Tc)f°''^^ 

=     l-{l-Pd,clusterf-''°''^'^- (49) 

The probability of field-level false alarm for the clustered field is given by equation (47), which 
will hold as long as the sensor density within a cluster doesn't vary by more than 10%. 

To show how these expressions are used to assist with field design, they are evaluated for a 
specific scenario. The field size and target speed are as given in the previous paragraph. The 
sensors are all ideal with a P^ = 0.9 out to a range of Rd = 100 m. The integration time is 
assumed to be 40 seconds and the total operation time under which a target is searched for is 
8 hours. Each sensor has a false alarm rate of 10"^ over the integration interval. The field is 
populated with A^ = 500,000 such sensors. Simple calculation shows the total detection area 
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coverage to be NuB'^ = 3, 927 nmi^ which is only 10% of the total search area, thus creating a 
sparse sensor field. 

For this sparse sensor field, it is necessary to require multiple sensor detection reports before 
classifying a detection as accurate. Consider the effects of taking iV > 3, A^ > 4, and N > 5 
sensor detection reports within a prospective target track. By evaluating the field-level detection 
and false alarm statistics, the utility of varying degrees of clustering is determined. The 
probability of detection for the field at various levels of clustering (no cluster, C = 100, 
C = 1000, C = 10, 000) is shown in figure 10 as a function of cluster size. It is obvious that 
detection performance is always less for clustering than for the uniform field. Also note that each 
value of C (number of clusters) has a corresponding "sweet spot" in cluster size. As long as the 
cluster is sized according to this sweet spot, detection performance is nearly identical for the 
various cluster sizes. However, the width of the sweet spot (how tightly held cluster size needs to 
be) decreases with larger numbers of clusters. This makes the most practical solution to have a 
relatively smaller number of clusters and keep the cluster size in the sweet spot. 

20 25 30 
Cluster Radius [nml] 

Figure 10. Detection Performance for a Field of Area 40,000 nmi^ 
(Pink: Uniform Distribution, Blue: C=20, Green: C=100, Red: C=500) 

The motivation for clustering was to decrease the false alarm rate for the field. The effects of 
clustering on field false alarm rate are shown in figure 11 for the same levels of clustering (no 
cluster, C = 100, C = 1000, C = 10, 000). Here it is obvious that clustering improves the false 
alarm performance (compared to uniform) if the clusters are made large enough. Furthermore, the 
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Figure 11. False Alarm Performance for a Field of Area 40,000 nmi^ 
(Pink: Uniform Distribution, Blue: C=20, Green: C=100, Red: C=500) 

cluster size must be larger for smaller numbers of clusters. Thus, a practical guideline may be 
derived that the cluster size be chosen as the largest cluster where the density can be held 
relatively constant (within 10% variation). Using this guideline, the number of clusters is chosen 
so that cluster size lands in the "sweet spot" for detection performance. In this way, a reasonably 
optimal tradeoff is made between false alarm performance and detection performance. Obviously, 
these decisions must be made with regard to meeting any set absolute performance criteria (i.e., 
Pfi must be greater than A^, and Pfa must be less than F); however, this analysis shows some of 
the tradeoffs that can be advantageously made. 

4.   CONCLUSIONS 

This report has provided an analytical derivation of the important tradeoffs involved in the 
performance of large distributed systems of proximity sensors. Throughout the analysis, realistic 
features were added to examine their impact on modifying the idealized system's resulting 
performance. A summary of the important results follows: 
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• Sensor detection performance versus range is driven by the total area under a Pd 
versus range curve. 

• Field detection performance for moving targets is generally better than for stationary 
targets, especially when an M out of A'^ detection criterion is applied to determine 
prospective targets. 

• Field probability of detection is lowered by increasing the number of required 
detections; however, probability of false alarm is lowered by a greater amount. 

• Non-uniformity of the spatial distribution degrades field detection performance in 
general. The degradation is larger for faster moving targets than for slow-moving or 
stationary targets. Also, the degradation is not very severe if the standard deviation of 
the distribution is on the order of the field size. 

• Non-uniformity of the spatial distribution degrades field false alarm performance in 
general. The degradation is moderate if the field sensor density does not vary by more 
than 10%. The degradation with non-uniformity is worse for larger numbers of 
required detections. 

• Clustering of sensors provides an effective way to lower field probability of false 
alarm at the expense of reduced field probability of detection. However, the effect on 
detection can be minimized by choosing the cluster size and number of clusters 
carefully to lie in a detection "sweet spot." 

• Clustering of sensors provides a means of mitigating the effects of non-uniformity, 
since the degree of non-uniformity is important only within a cluster. Thus, since 
clusters are geometrically small, their distributions are easier to control within 
acceptable bounds. 

These guidelines and the supporting calculations show that it is possible to optimize the 
performance of a sensor field for a given sensor type by choosing a proper clustering scheme, 
distribution requirement, and number of detections to generate a track. It is intended that the 
analysis contained in this report be used and expanded to assist in the design of optimally 
performing systems of large numbers of distributed sensors. Extensions that should be done 
include combined analysis with tracking systems, analysis of the effects of mixed (real plus false 
alarm) reports, analysis of fields of mixed sensor type, and numerical optimization of field 
performance in a Pareto optimal sense. 
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